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Abstract—The Network Design Problems (NDPs) represent 

a core combinatorial optimization problem. In this work, 
we investigate a NDP variant that has several significant 
applications mainly in telecommunication area, namely the 
Network Loading Problem (NLP). Precisely, the NLP 
requires installing capacities in a network that allow 
simultaneous routing of a set of traffic demands while 
minimizing fixed design costs. Thus, solving this challenging 
NP-hard problem is crucial for the economic 
competitiveness of network companies. For this problem, 
we address deterministic and stochastic models using an 
arc-path based formulation instead of the commonly used 
arc-node formulation.  One of the most important 
challenges for network researchers is to ensure that their 
networks, as they are designed, remain efficient despite the 
variability of input data.  Thus, to cope with real life 
situation, we consider demand uncertainties, and to deal 
with this uncertainty, we use the Sample Average 
Approximation (SAA) approach. We evaluate the gap 
between the solution derived by the SAA, and the optimal 
solution provided by the deterministic model with the 
estimated values of traffic demand. An experimental study 
was conducted on benchmark instances, in order to assess 
the proposed approach in the stochastic context.  

Keywords- Network Loading Problem; Arc-Path Formulation; 

Stochastic Programming; Sample Average Approximation. 

I.  INTRODUCTION  

In terms of graph theory, let’s consider a connected 

undirected graph and a number of distinct point-to-point demand 

commodities. Each commodity is assigned to a known demand 

flow value. In general, the goal of a Network Design Problem 

(NDP) is to design a network at the lowest possible cost thus 

allowing the total or partial circulation of traffic demands [1]. 

NDPs have been the subject of numerous scientific 

investigations. These investigations have covered realistic 

applications such as the deployment of optical fiber access 

networks (e.g. [2]-[4]). In addition to the telecommunications 

area, NDPs have various applications in the fields of logistics, 

transportation, localization, location and production, to quote 

just a few (e.g. [5]-[6]). Therefore, many variants of NDPs can 

be identified according to specific features such as the nature of 

capacities that could be installed on the edges and/or the costs of 

these installations. Moreover, several cases of flow strategies 

may also be considered. In particular, it is a question of routing 

a simple flow where there is only one demand to be routed 

between a single source and a single destination, this could be 

the case of data transmission between a terminal and a central 

processing node in centralized computer networks [7]. On the 

other hand, there is the case of multicommodity flow variants 

where demands are to be routed between several sources and 

destinations, as the facility location problem between 

distribution centers and customers (e.g. [2], [8]). Thus, for each 

commodity the flow is required to be routed along a single path, 

namely non-bifurcated routing. The case where bifurcations are 

allowed is referred to as the bifurcated network routing problem 

[9].  

In this paper, we investigate a particular variant of NDPs, 

namely the Network Loading Problem (NLP), in which 

capacities can be multiples of integers. Mirchandani [10] has 

proved that this strategic and challenging NDP is strongly NP-

hard. The input of the NLP is defined by a connected undirected 

graph G = (V, E), where V is a set of n nodes, and E is a set of m 

edges. On each edge e, e={i,j} ϵ E, i ϵ V, j ϵ V, i≠j , there is a 

link-cost fe of installing a capacity unit. We also have a set of 

different point-to-point demand commodities K. A commodity 

k, k=1...K, is given by a definite source node sk and a definite 

sink node tk. Moreover, for each commodity k, k=1...K, we have 

a function (.)kd  that corresponds to the probabilistic density 

function of the demand k to be partially circulated among 

different paths. Hence, we have 
K1,..,=k)

~
(

~
kdd   that represents the 

random vector of the stochastic demand amount and we suppose 

that the probability distribution of demand k is known. We also 

consider a penalty unit cost γk that is estimated for each 

undelivered unit of demand k, k=1...K. The NLP requires an 

installation of optical fibers cables with sufficient integer 

capacities to enable routing partially simultaneous traffic 

demands between network users while minimizing the total 

installation costs and the estimated penalty for undelivered 

demands.  

For sake of clearness, we present an illustrative example 

depicted in Fig. 1. This example represents a telecommunication 

network, where each node may be considered as a user that can 
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communicate data flows with other users, and each edge could 

be a fiber optic cable connecting two users. Thus, we have 5 

nodes, 8 edges and 5 traffic demands to deliver without 

exceeding any of the installed capacities. The cost of installing 

a capacity unit for each edge e, e ϵ  E, is detailed in Fig. 1. 

  
Figure 1.  Graph of the illustrative example 

Table I depicts the demands characteristics for each 

commodity k, k=1...K. 

TABLE I.  DEMAND CHARACTERISTICS OF THE ILLUSTRATIVE EXAMPLE  

Commodity N° k (sk , tk) Demand value dk 

1 (1,4) 7 

2 (3,4) 1 

3 (3,5) 2 

4 (4,5) 3 

5 (5,2) 2 

The optimal solution of the illustrative example of NLP 

problem is presented in Fig. 2. This solution is obtained when 

the exact approach of Mejri et al. [11] (discussed further in 

Section II) is applied on our illustrative example. Herein, we 

consider a high penalty value to be able to route all demands and 

we recall that the link capacity variable can take integer values 

which can be more than 1.  

  
Figure 2.  The optimal solution of the illustrative 

example 

As detailed in Fig. 2, the optimal solution value is equal to 

103 covering thus the total installation costs. The installed 

capacities are drawn in Fig. 2, too. For example, 7 units of 

capacities are installed on the edge {1,2} and only 1 capacity 

unit is installed on the edge {1,5}. At this stage, it worthy to 

mention that one difficulty of the NLP is determining the routing 

demand and assigning link capacities simultaneously, in 

addition to the multicommodity flow aspect. Not surprisingly, 

the complexity of NLP increases when the demand amounts are 

stochastic. To solve this challenging problem, a Sample Average 

Approximation (SAA) approach is developed, implemented, 

and assessed on Benchmark instances from the literature. 

The rest of the paper is structured as follows. Section II 

reviews the existing literature. Section III presents the proposed 

mathematical model. The SAA method is introduced in Section 

IV. Main results of computational experimentation are reported 

in Section V. Finally, conclusions and avenues for future works 

are drawn in Section VI. 

II. RELATED WORK 

Different flows routing policies have been investigated for 

the NLP. Particularly, the bifurcated NLP has been explored in 

[12] and [13]. The authors investigated a large scale problems 

for which they did not find optimal solutions, and despite the 

development of several fast heuristics, they were not able to 

identify the gap deviation from optimality. On the other hand, 

the case of non-bifurcated routing has the supplementary 

complexity by considering integer variables to model 

multicommodity flow paths [14]. 

When it comes to modeling the NLP, the most proposed and 

investigated models in the literature are flow-based linear 

programming formulations ([13], [15]-[16]). This formulation 

requires, for each edge, a continuous flow variable and an 

integer design variable. Other formulations for the NLP have 

been explored, particularly the capacity-based formulation that 

include only integer link capacity variables. Hence, from the 

commonly used flow-based formulation the capacity-based 

formulation is derived by projecting out all continuous flow 

variables [17]-[18].  

It is worthy to note that the existing literature on the NLP 

often supposes that traffic demands are deterministic in nature 

and known in advance, whereas in a large number of 

applications, these demands are stochastic and have 

considerable variability. Unfortunately, it is very difficult in 

practice to deal with these uncertainties, and solving a 

deterministic model to optimality in this context remains 

significantly hard to handle. In the last decade, many researchers 

have focused on developing deterministic approaches; however 

the literature considering uncertainty in NLP’s variant remains 

very scant. A review of the available literature on stochastic 

NLP’s allows identifying two different routing schemes. We can 

find the static routing procedure where the routing flow must be 

constant for all realizations of the demands. Adopting this 

routing policy, Altin et al. [19] focused on polyhedral aspects of 

the NLP considering hose demand uncertainty for splittable 

flows.  Later, Koster et al. [20] proposed a similar investigations 

assuming two budgeted uncertainty. On the other hand, we can 

consider dynamic routing policy that allows adapting the flows 

to different demand realizations. By considering both bifurcated 

flows and dynamic routing under demand uncertainty, Mattia 
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[21] developed the first exact branch-and-cut scheme related to 

bi-level optimization using the capacity-based formulation for 

solving the Robust NLP.  Later on, an extension of this work 

was presented in [22] by exploring both static and dynamic 

routing, with splittable and unsplittable flows. 

To the best of our knowledge, no path-based Mixed Integer 

Linear Programming (MILP) formulation has been investigated 

so far for solving the stochastic NLP. This could be explained 

by the exponential number of its path-flow variables in addition 

to the complexity resulting from the uncertainty of problem 

parameters. Thus, their resolution poses significant algorithmic 

challenges. Besides, the Sample Average Approximation (SAA) 

approach has not been applied for the stochastic NLP, which is 

one of the contributions of this work. 

III. PATH-BASED FORMULATION  

To formulate the stochastic NLP where the demand amounts 

are considered uncertain, we denote by Pk the list of all available 

paths coming out from the source nodes sk to the   sink nodes tk. 

We associate a binary constant αerk that takes value 1 if edge e, 

e ϵ E, is in the path r, r ϵ Pk , of commodity k k=1,...,K.  

In what follows, we define ye, e ϵ E, the integer link-capacity 

variable on each edge and zk
r, k=1,...,K, r ϵ Pk, a continuous 

nonnegative variable that corresponds to the value of flow of 

commodity k delivered through the path r. We also introduce a 

continuous nonnegative variable ρk which expresses the 

quantity of undelivered demand of the commodity k, k=1,...,K. 

Then, the proposed path-based formulation for the stochastic 

NLP reads as: 

k
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The objective (1) aims at minimizing the total installation 

costs and the estimated penalty for undelivered demands. 

Constraints (2) enable routing partially simultaneous 

realizations of the demand vector K1,..,=k)
~

(
~

kdd  . Constraints 

(3) reflect the capacity restrictions for each edge. Constraints 

(4)-(5) impose the non-negativity of decision variables z and ρ. 

Constraints (6) limit variables y to be integers.  

IV. SAMPLE AVERAGE APPROXIMATION APPROACH 

Herein, we are interested in estimating the real-valued 

network solution by (stochastic) simulation. Let S be the set of 

the possible demand scenarios. We notice that a scenario s, s ϵ 

S, corresponds to a vector )
~

,...,
~

(
~

1

s

K

ss ddd  of potential 

random demand realizations
kd

~
, k=1,...,K. This leads to the 

following extended stochastic optimization formulation: 
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Due to the large number of possible demand realizations, it 

is usually impossible to find the exact optimal solution of 

stochastic programming. Thus, we conducted studies using one 

standard approach, namely Sample Average Approximation 

(SAA) method. SAA is a Monte Carlo simulation technique 

involving sampling and optimization methods for deterministic 

problems. The main idea of the SAA procedure consists in 

generating a finite number of scenarios to approximate the 

expected value of the objective function [23]. Hence, in the 

following, we consider a sampling procedure that was 

introduced by Mak, et al. [24], and later on used in [25]. 

To efficiently solve the resulting approximated model 

derived from (7)-(11), we propose a SAA based-procedure as 

follows: 

- First, we generate N independent sample subsets of scenarios 

S¹,...,SN. For each subset Sξ , ξ=1,…,N, we have M different 

combinations of scenarios sξ
₁ ,..., sξ

M. 

- For each possible demand realization ),
~

,...,
~

(( ,,

1

 p

k

p dd  

p=1,...,M, ξ=1,...N), associated to each scenario sξ
p, we 

consider the following problem : 
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Then, the above problem should be solved to find )(~ Sz  the 

value of the objective function for each sample subset of 

scenarios Sξ, ξ=1,...N. To achieve this, we applied the exact 

approach proposed in [11] based on a tailored Benders 

decomposition procedure, coupled with a column generation 

method and an exact cut generation model [26]. 

- Finally, we compute the following valid lower bound for the 

stochastic NLP: 

).(~1

1





N
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   (17) 

As discussed in [24], the SAA is an effective approach when 

the number of possible scenarios is sufficiently high to estimate 

the optimal solution of stochastic programming. Thus, the 

quality of SAA approximated solution monotonically improves 

by increasing the number of parameters M (number of 

scenarios) and N (subsets cardinality). Unfortunately, it is very 

hard in practice to solve large-size instances considering a high 

number of scenarios. This leads to an extremely long 

computing time. A way to deal with these restrictions is to 

identify whether an obvious point of compromise could be 

made between the performance of the approximate solutions 

and the required time consuming. Herein, in this work, we focus 

on making this trade-off while deciding on values of M and N. 

V. COMPUTATIONAL EXPERIMENTATION 

The proposed SAA approach has been coded using C# 

language in concert with the commercial solver CPLEX 

(version 12.6). All computations were carried out on a computer 

equipped with an Intel(R) CORE (TM) i7-9750H CPU@ 

2.6GHz processor and 24 GB of RAM. 

The considered test-bed consists of 6 realistic network 

instances inspired from live traffic data histories. There is one 

instance denoted by ABILENE and defined by the U.S. 

Internet2 Network [27] and one instance denoted by 

GERMANY17 and provided by the NOBEL project [28]. The 

physical topology of ABILENE and GERMANY17 networks 

appear in Fig. 3 and Fig. 4, respectively. The other remaining 

real-life instances are studied in [20] and [22]. It is worthy to 

mention that these instances are also accessible from the 

Survivable Network Design Library (SNDlib) [29]. 

  
Figure 3.  ABILENE network physical topology  [29] 

  

Figure 4.  GERMANY17 network physical topology  [29] 

A description of the realistic instances is shown in Table II, 

where the column (Inst.) refers to the instance designation. The 

numbers of nodes (n) and edges (m) range from 11-17, and 15-

42, respectively. The number of commodities (K) varies from 

22 to 121. 

TABLE II.  THE INSTANCES CHARACTERISTICS [29] 

Inst. n m K 

ABILENE 12 15 66 

GERMANY17 17 26 121 

DI-YUAN 11 42 22 

PDH 11 34 24 

POLSKA 12 18 66 

NOBEL-US 14 21 91 

 

To deal with demand uncertainty, we transform the 

commonly-used deterministic demand dk to a probabilistic 

demand
kd

~
 such that

kk ddE ]
~

[ . For the numerical 

experiments, we set the coefficient of variation at 20% (i.e. 

2])
~

[2.0(]
~

[ kk ddVar  ), defining a ‘low’ variance scenario. 

Then, we suppose that
 kd

~
 will follow a LogNormal distribution 

with
kk ddE ]

~
[ . The LogNormal distribution has been adopted 

because this distribution should be preferred than the Normal 

distribution in the case of positive demands [30]. Then, we 

choose the values of location parameter μk, and scale parameter 

σk, corresponding to each lognormally distributed demand 
kd

~

∼Lognormal (μk,σk), according to the method of moments 

introduced by Juan et al. [30] and used in designing stochastic 

networks such as [6] and [25]. More precisely, we apply the 

following equations (18) and (19): 
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Setting the appropriate parameter configurations is often 

complex to tune as it is a crucial and error prone task. In this 

context, in order to find an appropriate tuning parameter of our 

approach, we have considered in our experiments different 

combinations, as previously explained in Section IV, for 

defining the number of scenarios M and subsets cardinality N 

characterizing the SAA approach. A compromise between the 

solutions performance and required CPU times has been taken 

into account. Thus, a large empirical experimentation was 

conducted to eventually set the values of the parameters M and 

N as follows: M=100, N=10. 

A. Performance of the Sample Average Approximation 

approach 

We first evaluate empirically the performance of the 

probabilistic lower bound for stochastic NLP provided by SAA 

approach. Then, we compare the deterministic solution where 

traffic demand is fixed over time to the stochastic one where we 

have random demand realizations. Specifically, we define the 

corresponding GAP, which is the difference in objective values 

between the stochastic lower bound solution and the optimal 

deterministic solution. We notice that, at this stage, the penalty 

value is fixed at 5.  

The obtained results are reported in Table III. Let ZSAA, 

TimeSAA, Z*, Time*, and GAP denote respectively, the value of 

the proposed SAA approach solution, the total CPU time to 

calculate ZSAA in seconds, the value of the optimal deterministic 

solution and its total CPU time in seconds as computed in [11], 

and the gap in percentage computed as                                           

GAP=100×(( Z*-ZSAA)/ Z*). 

TABLE III.  PERFORMANCE OF THE PROPOSED SAA APPROACH  

Inst. ZSAA TimeSAA Z* Time* GAP 

ABILENE 32817830396 359.44 32822031845 7.33 0.01% 

GERMAN

Y17 
28361 321.58 29480 66.74 3.80% 

DI-YUAN 1617135 82.30 1619886 15.87 0.17% 

PDH 502238977 186.19 502572465 58.36 0.07% 

POLSKA 5477976 264.06 5639987 3216.87 2.87% 

NOBEL-

US 
191787 274.30 209840 2607.15 8.60% 

 

Globally, the results show that instances with up to 17 nodes 

and 121 commodities are solved in a reasonable average time, 

which reflects the effectiveness of the proposed stochastic 

procedure. In addition, we see from table III that stochastic 

programming provides more effective results when compared 

to the deterministic approach and with respect to our objective 

function. However, the SAA proposed approach requires not 

surprisingly more computing times. Notice also that the average 

gap between the obtained lower bound solutions and the 

available deterministic results is about 2.5% which is not really 

important; this is due to the ‘low’ variance scenario. We 

should, nevertheless, recall that this comparative analysis is not 

absolutely rigorous because we compare different approaches 

for different types of demand realizations (fixed scenarios 

versus random scenarios). A better comparison is performed if 

upper bounds of the stochastic solutions are derived with a 

simulation-based optimization such as in [25]. This gives an 

additional perspective by indicating the performance of the 

stochastic model with respect to the demand variability. 

B. Relationship between the total installation costs and the 

expected penalty costs 

An interesting aspect to investigate is the relationship 

between the costs of installing capacities and the estimated 

penalties of undelivered demands. The computational results 

are reported in Table IV. For each network instance, let FSAA be 

the corresponding fixed installation costs, and PSAA be the 

corresponding estimated penalties resulting from the unrouted 

flows. Obviously, ZSAA= FSAA + PSAA. Table V shows that the 

estimated penalties constitute an average of 0.437% of the total 

installation costs. This shows that the installed capacities in the 

network are not sufficient to satisfy the simultaneous routing of 

all traffic demands. We also mention that these results reflect 

the real-life situations, such as in telecommunications where the 

fixed installation costs are significantly high compared to the 

penalty costs. 

TABLE IV.  RELATIONSHIP BETWEEN THE COSTS OF INSTALLING CAPACITIES 

AND PENALTIES OF UNDELIVERED DEMANDS  

Inst. ZSAA F SAA P SAA P SAA/ F 
SAA 

ABILENE 32817830396 32476688141 1524363 0.00005 

GERMANY17 28361 28303 58 0.00205 

DI-YUAN 1617135 1616727 408 0.00025 

PDH 502238977 490806903 11432074 0.02329 

POLSKA 5477976 5477590 386 0.00007 

NOBEL-US 191787 191684 103 0.00054 

Average 0.00437 

 

Next, we investigate the effect of the per-unit penalty cost 

on the obtained SAA solutions. Test cases with different per-

unit penalty cost values are examined, namely 5, 50, 100, and 

150. Since no significant difference in results was detected 

while testing these values on all realistic instances, so to lighten 

the analysis, only the results of ABILENE and DI-YUAN 

Networks are reported in Table V. 

TABLE V.  COMPARISON OF THE OBTAINED SAA SOLUTIONS FOR DIFFERENT 

PENALTY VALUES  

Inst. Penalty ZSAA TimeSAA F SAA P SAA 
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ABILENE 

5 32817830396 359.44 32476688141 1524363 

50 32835360579 364.90 32816306033 19054546 

100 32854415125 382.40 32816306033 38109092 

150 32872856845 314.90 32816306033 56550812 

DI-YUAN 

5 1617135 82.31 1616727 408 

50 1618276 21.15 1617460 816 

100 1618684 20.01 1617460 1224 

150 1621000 17.50 1617460 3540 

 

Table V shows that the proposed SAA approach has a 

tendency to design networks with higher link installation costs, 

when the penalty costs increase. Then, the network will be 

completely saturated (corresponds to a penalty of 50 in Table 

V), which explains why the fixed installation costs remain 

constant despite the continuing increase of the penalty values. 

VI. CONCLUSION AND PERSPECTIVES 
This paper investigates the Network Loading Problem with 

stochastic demands. It is a challenging NP-hard network design 
problem that is drawing the interest of practitioners as well as 
researchers for its relevant applications, particularly in the field 
of telecommunications. To tackle this problem, we begun by 
addressing deterministic and stochastic models using an arc-
path based MILP formulations instead of the commonly used 
arc-node formulation. To deal with the demand uncertainty, we 
tailored a Sample Average Approximation based procedure. 
Computational experimentation was conducted on realistic 
benchmark instances from the literature. Promising results have 
been reported regarding the performance of the proposed 
approach. Studies are underway to explore the avenue of 
developing effective approach that couples simulation as well 
as optimization, to derive approximate stochastic solutions for 
the NLP. 
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